文献:Biomimetic Nanoparticles Blocking Autophagy for Enhanced Chemotherapy and Metastasis Inhibition via Reversing Focal Adhesion Disassembly
文献链接:
https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-021-01189-5?utm_source=xmol&utm_medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata作者:Yesi Shi,Gan Lin,Huili Zheng,Dan Mu,Hu Chen,Zhixiang Lu,Pan He,Yang Zhang,Chao Liu,Zhongning Lin,Gang Liu
相关产品:NHS-ICG(活性酯-吲哚菁绿)
原文摘要:
Background:Autophagy is a conserved catabolic process, which plays an important role in regulating tumor cell motility and degrading protein aggregates. Chemotherapy-induced autophagy may lead to tumor distant metastasis and even chemo-insensitivity in the therapy of hepatocellular carcinoma (HCC). However, a vast majority of HCC cases do not produce a signifi cant response to monotherapy with autophagy inhibitors.
Results:In this work, we develop a biomimetic co-delivery nanoformulation (TH-NP) co-encapsulating Oxaliplatin(OXA)/HCQ (hydroxychloroquine, an autophagy inhibitor) to execute targeted autophagy inhibition,reduce tumor cell migration and invasion in vitro and attenuate metastasis in vivo. Especially, TH-NPs can signifi cantly improve OXA and HCQ concentration with approximately 21 and 13-fold increment in tumor tissues compared to the free mixture of HCQ/OXA. Moreover, the tumor-targeting TH-NPs release HCQ can alkalize the acidic lysosomes and thus inhibit the fusion of autophagosomes and lysosomes,leading to most effective blockade of autophagic fl ux compared to various controls. This largely improves chemotherapeutic performance of OXA in subcutaneous and orthotopic HCC mouse models.Importantly, TH-NPs also exhibit the most effective inhibition of tumor metastasis in orthotopic HCCLM3 models, and in the HepG2, Huh-7 or HCCLM3 metastatic mouse models. Then, we illustrate the enhanced metastasis inhibition is attributed to the blockade or reverse of the autophagy-mediated degradation of focal adhesions (FAs) including E-cadherin and paxillin.
Conclusions:TH-NPs can perform an enhanced chemotherapy and antimetastatic effect, and may represent a promising strategy for HCC therapy in clinics.
NHS-ICG:NHS 是一种活性化学基团,它主要用于与含有氨基(- NH2)的化合物进行化学反应,形成稳定的酰胺键。在 NHS - ICG 结构中,NHS 基团为后续的偶联反应提供了活性位点,使 ICG 能够方便地与其他含有氨基的分子或材料连接。ICG 是一种近红外荧光染料。它的化学结构比较复杂,主要特点是在近红外区域(700 - 900nm)有较强的荧光发射。这个波段的光在生物组织中的穿透性相对较好,散射和吸收较少,因此在生物医学成像领域应用广。ICG 可以被注射到生物体内,通过特定的成像设备(如近红外荧光成像仪)观察其在体内的分布情况。基于NHS-ICG的性能,标记过程如下:
图:ICG结构式
标记过程:
将溶解好的 TH - NPs 溶液置于反应容器中,在避光和适当搅拌的条件下,逐滴加入 NHS - ICG 溶液。滴加过程要缓慢,以确保均匀混合并且避免局部浓度过高导致副反应。标记反应一般在室温(20 - 25℃)或稍高一点的温度(如 30 - 37℃)下进行。反应时间根据纳米粒子和 NHS - ICG 的性质而定。在此期间,要保持避光,因为 ICG 对光敏感,光照可能会导致其分解,影响标记效率。标记过程中,可以使用紫外-可见分光光度计在反应过程中监测标记情况。NHS - ICG 在特定波长下有吸收峰,随着标记反应的进行,吸收峰的强度和位置可能会发生变化。通过观察这些变化,可以初步判断标记反应的进程。反应结束后,将反应混合物转移至透析袋中,在适当的缓冲溶液(如 PBS)中透析,以除去未反应的 NHS - ICG,期间要多次更换透析外液,以确保将游离的 NHS - ICG 充分除去。
结论:
该文献中NHS-ICG成功标记TH - NPs,由于 ICG 具有良好的近红外(NIR)荧光特性,能够使标记后的纳米粒子(TH - NPs)在近红外光激发下产生荧光。近红外光在生物组织中的穿透深度相对较深,而且生物组织在这个波段自身荧光干扰少。这使得标记后的 TH - NPs 可以用于生物体内的深层组织成像。